ON POINTWISE-COMPACT SETS OF MEASURABLE FUNCTIONS

G. A. Edgar Department of Mathematics The Ohio State University Columbus, OHIO 43210/U.S.A.

The result proved below concerns a convex set of functions, measurable with respect to a fixed measure, and compact in the topology of pointwise convergence. The first and most interesting theorems along these lines were proved in [6] and [7] by A. Ionescu Tulcea. Several alternate proofs have been given since that time-for example [8]. The case of nonconvex sets was studied by Fremlin [4] and by Talagrand [10].

For the result proved here, I weaken the "separation property", and correspondingly weaken the conclusion, using the weak topology $\sigma(L^1, L^{\infty})$ rather than the metric topology of L^1 or L^0 . The result is then applicable to the proof of the recent characterization of Pettis integrability in terms of the "core".

The following notation will be fixed throughout the paper. Let $(\Omega, \mathbf{3}, \mu)$ be a complete probability space. $\mathcal{L}^{O} = \mathcal{L}^{O}(\Omega, \mathbf{3}, \mu)$ denotes the set of all realvalued measurable functions. $L^{O} = L^{O}(\Omega, \mathbf{3}, \mu)$ denotes the space of equivalence classes obtained by identifying functions that agree almost everywhere. Similar distinctions apply to \mathcal{L}^{1} , L^{1} , \mathcal{L}^{∞} , L^{∞} . The topology on $\mathcal{L}^{O}[$ or $L^{O}]$ is induced by the pseudometric [or metric] defined by

 $d(f, g) = \int |f - g| \wedge 1 d\mu$.

If A is a subset of Ω , the topology (on \mathbb{R}^{Ω}) of pointwise convergence on A will be denoted $\tau_p(\mathbf{A})$. Thus a net f_{α} of functions converges to f according to $\tau_p(\mathbf{A})$ iff $f_{\alpha}(\mathbf{a}) \rightarrow f(\mathbf{a})$ for all $\mathbf{a} \in \mathbf{A}$. If W is a subset of \mathfrak{L}^{O} , we write (W, \mathfrak{L}^{O}) for the topological space with point set W and topology obtained from the pseudometric on \mathfrak{L}^{O} . Similarly, if $W \subseteq \mathfrak{L}^{1}$, we write (W, \mathfrak{L}^{1}) and $(W, \sigma(\mathfrak{L}^{1}, \mathfrak{L}^{\infty}))$ for W equipped with the strong and weak topologies (respectively) of \mathfrak{L}^{1} .

The following hypotheses will be in effect through most of this paper: Let W be a subset of \mathcal{L}^{O} . Let $E \subseteq \Omega$. Suppose the following <u>separation property</u> holds: If f, g \in W, then f = g on E if and only if f = g a.e.

To reduce confusion, I will also use these two notations. Let $W_1 = \{f|_F :$

 $f \in W \} \subseteq \mathbb{R}^{E}$, and let W_{2} be the image of W under the quotient map $\mathfrak{L}^{0} \to L^{0}$. The separation property says that the identity map $W \to W$ induces a bijection $W_{1} \to W_{2}$.

The first proposition is essentially due to Ionescu Tulcea. The proof is carefully spelled out here to show exactly the sort of reasoning that is involved.

PROPOSITION 1. Suppose W and E are as above. If W is $\tau_p(\Omega)$ - countably compact, then W₂ is closed in L⁰ and the evaluations $f \mapsto f(e)$ are \mathfrak{L}^0 -continuous on W for $e \in E$. That is, the identity map $(W, \mathfrak{L}^0) \to (W, \tau_p(E))$ is continuous.

<u>Proof.</u> Let $f_n \in W$, and assume $f_n + f(\mathfrak{L}^0)$. There is a subsequence (f'_n) with $f'_n + f(a.e.)$. But W is $\tau_p(\Omega)$ -countably compact, so (f'_n) has a cluster point $g \in W$ for the topology $\tau_p(\Omega)$. Thus f = g a.e. This shows W_2 is closed in L^0 .

Now fix $e \in E$. Suppose f_n , $f \in W$ and $f_n + f(\mathfrak{L}^0)$. I claim that $f_n(e) + f(e)$. Suppose not. Then there is a subsequence (f'_n) of (f_n) so that $f'_n(e)$ converges, but not to f(e). Then there is a subsequence (f''_n) of (f'_n) such that $f''_n + f(a.e.)$. Let $g \in W$ be a $\tau_p(\Omega)$ -cluster point of (f''_n) . Then $g(e) = \lim f'_n(e) \neq f(e)$, while $g = \lim f''_n = f$ a.e., contradicting the separation property. This shows $f \mapsto f(e)$ is \mathfrak{L}^0 - continuous on W.

<u>Note.</u> Suppose the measure space $(\Omega, \mathfrak{F}, \mu)$ has this property: if (f_n) is a sequence in \mathfrak{L}^0 , and every subsequence has a measurable $\tau_p(\Omega)$ - cluster point, then there is a subsequence that converges a.e. In that case, in the above proposition, the identity map $(W, \mathfrak{L}^0) \rightarrow (W, \tau_p(E))$ is a homeomorphism. Fremlin [4] has shown that all perfect measure spaces have this property.

In the next theorem, the case $E = \Omega$ was proved by Ionescu Tulcea [6]. PROPOSITION 2. Suppose W and E are as above. If W is $\tau_p(\Omega)$ - sequentially compact, then the natural map $(W_1, \tau_p(E)) \rightarrow (W_2, L^0)$ is a homeomorphism. So the identity map $(W, \tau_p(\Omega)) \rightarrow (W, \mathcal{L}^0)$ is continuous.

<u>Proof.</u> First, I claim that W_2 is compact in L^0 . Let $f_n \in W$, and suppose $f_n \rightarrow h(\mathfrak{L}^0)$. There is a subsequence (f_n') of (f_n) with $f_n' \rightarrow h$ (a.e.). There is a subsequence (f_n'') of (f_n') and $g \in W$ with $f_n'' \rightarrow g(\tau_p(\Omega))$. Then h = g a.e. Thus (W_2, L^0) is compact.

Next, since $(W, \tau_p(\Omega))$ is sequentially compact, it is countably compact, so by Proposition 1, the natural map $(W_2, L^0) \rightarrow (W_1, \tau_p(E))$ is continuous. But (W_2, L^0) is compact and $(W_1, \tau_p(E))$ is Hausdorff, this natural map is a

homeomorphism. \Box A set $W \subseteq \mathfrak{L}^0$ is <u>uniformly integrable</u> iff for every $\varepsilon > 0$, there exists $a < \infty$ so that

$$\int_{\{|\mathbf{f}| > a\}} |\mathbf{f}| d\mu < \varepsilon$$

for all f \in W . In particular, W is bounded in the \mathfrak{L}^{1} norm.

Here is the main result of the paper. Its proof is not difficult.

PROPOSITION 3. Suppose W and E are as above. If W is convex, uniformly integrable, and $\tau_p(\Omega)$ - countably compact, then the two topologies $\tau_p(E)$ and $\sigma(\mathfrak{L}^1, \mathfrak{L}^{\infty})$ coincide on W. So the identity map $(W, \tau_p(\Omega)) \rightarrow (W, \sigma(\mathfrak{L}^1, \mathfrak{L}^{\infty}))$ is continuous.

<u>Proof.</u> Let e ∈ E and r ∈ R. The (image in W₁ of the) set {f ∈ W: f(e) ≤ r) is closed in (W₁, $\tau_p(E)$), and hence, by Proposition 1, closed in (W₂, L¹). It is therefore closed in (L¹, L¹). But it is convex, so it is closed in (L¹, $\sigma(L^1, L^{\infty})$), and therefore closed in (W₂, $\sigma(L^1, L^{\infty})$). Similar assertions can be made for a set {f ∈ W: f(e) ≥ r}. Thus the map f ↔ f(e) is $\sigma(L^1, L^{\infty})$ continuous on W₂. Thus the natural map (W₂, $\sigma(L^1, L^{\infty})$) → (W₁, $\tau_p(E)$) is continuous. Now W is uniformly integrable and W₂ is closed in L¹, so (W₂, $\sigma(L^1, L^{\infty})$) is compact [1, IV.8.11]. So the map (W₂, $\sigma(L^1, L^{\infty})$) → (W₁, $\tau_p(E)$) is a homeomorphism, and thus the identity map (W, $\sigma(\mathfrak{L}^1, \mathfrak{L}^{\infty})$) → (W, $\tau_p(E)$) is a homeomorphism. □

<u>Notes.</u> (a) It follows in particular that $(W_1, \tau_p(E))$ is sequentially compact.

(b) Under these hypotheses it does not follow in general that the topologies \mathfrak{s}^{1} and $\sigma(\mathfrak{s}^{1}, \mathfrak{s}^{\infty})$ coincide on W. A counterexample of Talagrand [10] is also a counterexample to this.

(c) The stronger conclusion that the topologies \mathfrak{L}^{1} and $\tau_{p}(E)$ coincide on W is true if the measure space $(\Omega, \mathfrak{F}, \mu)$ has this property: if (f_{n}) is a sequence in \mathfrak{L}^{0} , and every $\tau_{p}(\Omega)$ -cluster point of (f_{n}) vanishes a.e., then $f_{n} \neq 0$ in measure. Fremlin's theorem [4] shows that perfect measure spaces have this property.

The proofs of the following two corollaries are left to the reader. Corollary 4 is essentially due to Ionescu Tulcea [7] .

COROLLARY 4. Suppose W and E are as above. Suppose that $E = \Omega$ and that W is convex and $\tau_p(\Omega)$ - countably compact. Then the two topologies $\tau_p(\Omega)$ and \mathfrak{L}^0 coincide on W. If, in addition, W is uniformly integrable, then the three topologies $\tau_n(\Omega)$, \mathfrak{L}^1 , $\sigma(\mathfrak{L}^1, \mathfrak{L}^\infty)$ coincide on W.

The "separation hypothesis" on W and E is not postulated in the next Corollary.

COROLLARY 5. Let W be a uniformly integrable, convex, $\tau_p(\Omega)$ - compact subset of \mathfrak{L}^1 . Define

$$A = \bigcap \{ \omega \in \Omega : f(\omega) = g(\omega) \}$$

where the intersection is over all pairs f, $g \in W$ with f = g a.e. Assume that $A \cap \{w: f(w) \neq g(w)\} \neq \emptyset$ if f, $g \in W$ and $\mu\{w: f(w) \neq g(w)\} > 0$. Then the identity map $(W, \tau_p(\Omega)) \rightarrow (W, \sigma(\mathcal{L}^1, \mathcal{L}^\infty))$ is continuous. In particular, for any $B \in \mathfrak{F}$, the map $f \mapsto \int_B f d\mu$ is $\tau_p(\Omega) - continuous on W$.

The following Corollary is due to Tortrat [11] .

COROLLARY 6. Let X be a Banach space, **3** the Baire sets of (X, weak), and μ a probability measure on **3**. If μ is τ -smooth, then there is a separable subspace A of X with μ -outer measure 1.

<u>Proof.</u> Let W be the unit ball of the dual space X^* . Define $A = \bigcap \{f^{-1}(0): f \in W, f = 0 \text{ a.e.}\}$. Then by τ -smoothness, A has outer measure 1. By Corollary 4, with $E = \Omega = A$, the topologies $\tau_p(A)$ and \mathfrak{L}^0 coincide on W. Thus $(W, \tau_p(A))$ is metrizable, so the weak^{*} topology on the dual ball of A is metrizable, so the subspace A is separable. \Box

<u>Note.</u> From this can be deduced well-known theorems of Gothendieck and Phillips; see [2, Theorem 5.1].

The following is a result of Talagrand; partial results were proved by Geitz [5] and by Sentilles [9].

PROPOSITION 7. Let X be a Banach space, and $\varphi: \Omega \to X$ scalarly measurable. Assume {fog: $f \in X^*$, $||f|| \le 1$ } is uniformly integrable. Suppose $\operatorname{cor}_{\varphi}(C) \neq \emptyset$ for all $C \in \mathcal{F}$ with $\mu(C) > 0$, where

 $\operatorname{cor}_{co}(C) = \bigcap \{ \operatorname{cl} \operatorname{conv} \varphi (C \setminus \mathbb{N}) : \mathbb{N} \in \mathfrak{F}, \mu(\mathbb{N}) = 0 \}$.

Then φ is Pettis integrable.

<u>Proof.</u> Consider a measure space $(\Omega', \mathfrak{F}', \mu')$ defined by: $\Omega' = X$, $\mathfrak{F} = \text{Baire } (X, \text{ weak}), \mu' = \varphi(\mu)$. Let W be the unit ball of X^* ; this is a convex, uniformly integrable, subset of $\mathfrak{L}^O(\Omega', \mathfrak{F}', \mu')$. By Alaoglu's theorem [1, V.4.2], W is $\tau_p(\Omega')$ -compact. Define A as in Corollary 5; in this case, A is the intersection of all closed hyperplanes of measure 1. This implies that $\operatorname{cor}_{\mathfrak{G}}(\Omega) \subseteq A$.

Let $f \in X^*$, $\mu \{f = 0\} < 1$. There is $\varepsilon > 0$ so that either $\mu \{f > \varepsilon\} > 0$

or $\mu\{\mathbf{f} < -\epsilon\} > 0$; assume without loss of generality that the first of these occurs. For $C = \{\mathbf{f} \ge \epsilon\}$, if $x \in \operatorname{cor}_{\varphi}(C)$, then $f(x) \ge \epsilon$, so $A \cap \{\mathbf{f} \neq 0\} \neq \emptyset$. So Corollary 5 is applicable. Thus the map $f \leftrightarrow \int f d\mu'$ is $\tau_p(\Omega')$ - continuous, so $f \leftrightarrow \int f \circ \varphi d\mu$ is weak^{*} - continuous, and the Pettis integral $\int \varphi d\mu$ exists. The same argument shows that the Pettis integral $\int_{C} \varphi d\mu$ exists for any $C \in \mathfrak{F}$.

Remarks. (a) In the terminology of [2], property (C) implies the PIP. (b) In the notation used above, the unit ball of A is W_1 , and $(W_1, \tau_p(A))$ is the weak* topology there. This is homeomorphic to $(W_2, \sigma(L^1, L^{\infty}))$, which is clearly an Eberlein compact. So the subspace A is isomorphic to a subspace of a WCG Banach space. However, A need not be separable.

REFERENCES:

- 1. N. Dunford and J. T. Schwartz, <u>Linear Operators, Part I.</u> Interscience, New York, 1957.
- G. A. Edgar, Measurability in a Banach space. <u>Indiana Univ. Math. J.</u> 26(1977) 663-677.
- G. A. Edgar, Measurability in a Banach space, II. <u>Indiana Univ. Math. J.</u> 28 (1979) 559-579.
- D. H. Fremlin, Pointwise compact sets of measurable functions. <u>Manuscripta Math.</u>, 15(1975) 219-242.
- 5. R. F. Geitz, Geometry and the Pettis Integral. (preprint)
- A. Ionescu Tulcea, On pointwise convergence, compactness and equicontinuity in the lifting topology, I. <u>Z. Wahrscheinlichkeitstheorie und Verw. Gebiete</u> 26 (1973) 197-205.
- A. Ionescu Tulcea, On pointwise convergence, compactness, and equicontinuity, II. Advances in Math. 12(1974) 171-177.
- L. Schwartz, Certaines propriétés des mesures sur les espaces de Banach. <u>Semi-</u> naire Maurey-Schwartz 1975-1976, exposé no XXIII.
- 9. D. Sentilles, Stonian integration of vector functions. In: <u>Measure Theory and Appl., Proc. 1980 Conf., Northern Illinois University</u>, G. A. Goldin and R. F. Wheeler, eds., De Kalb, Illinois, 1981. pp. 123-135.
- M. Talagrand, Compacts de fonctions mesurables et filtres non measurables. <u>Stu-</u> <u>día Math.</u> 67(1980) 13-43.
- A. Tortrat, τ régularité des lois, séparation au sens de A. Tulcea et propriété de Radon-Nikodym. Ann. Inst. Henri Poincaré, Sect. B, 12(1976) 131-150.